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Abstract. All Klein-Gordon, wIV =f(w),andevolution. w ,  =l(q q, .  . . , w,,,,,),equations 
admitting autotransformations 9 = o [ w ]  are found ( a [ w ]  i s  such a function of w and its 
finite-order derivatives that any solution w is mapped into a solution 'p of the Same 
equation). Besides the linear ones, they include only the Liouville equation and the Burgers 
equation hierarchy. Their special Bicklund autotransformations 'p = a[o] are also found. 

1. Introduction 

Some of the Backlund transformations of partial differential equations (PDE), such as 
the well known Hopf-Cole [ l ,  21 (0 = w-'wX and Miura [ 3 ]  'p = mx -fw' transforma- 
tions, have the special form 'p = a [ w ] ,  where a [ w ]  is a differential function of w, i.e. 
a function of w and its finite-order derivatives. An equation 'p = a["] ,  which determines 
such a differential substitution, is not necessarily an ordinary differential or  first-order 
equation, e.g. the map 'p =1n(2wXw,w~*) of oxy = 0 into the Liouville equation 'p~yy = 
exp 'p [4] or the maps 'p = wxx -fw: and 'p = w;'w,,, -&;*w:~ of certain continual 
classes of evolution equations [ 5 , 6 ] .  A differential substitution 'p = a [ w ]  maps any 
solution w of a PDE d[w] = 0 into a solution 'p of another PDE d[ Q ]  = 0; as a rule these 
PDE are different. In contrast, a Backlund autotransformation, which connects a solution 
w of a PDE d[w] = 0 with another solution q of the same PDE d['p] = 0, contains 
derivatives of both solutions as a rule [ 4 , 7 - l o ] .  

In  this paper, we deal with Backlund transformations, which are differential substitu- 
tions and Backlund autotransformations at the same time. An equation 9 = a [ w ]  is 
said to be a special Backlund autotransformation (SBA) of a PDE d[w] = O  if it maps 
any solution w of the PDE into a solution 9 of the same PDE, i.e. d [ a [ w ] ]  = 0 if d[w] = 0. 
If a PDE admits one SBA ' p = a [ w j ,  then it admits at least the countable set of SBA: 

'p = a [ w ] ,  'p = a [ a [ w ] ] ,  'p = a [ a [ a [ w ] ] ] ,  etc. However, this interesting property is not 
the main reason why SEA need to be studied. SBA were very rarely mentioned in the 
literature. Only the first-order SEA [8], the countable set of SBA [ l l ]  of the Burgers 
equation, and the countable set of SBA [12] of the third-order Burgers equation are 
known. Why? There was no systematical study of SBA, of course, but the reason is 
quite dinlerent. i t  appears that very Few PDE admit SEA. i n  this paper, we search through 
two infinite classes of PDE for those admitting SBA but find only the Liouville equation 
and the hierarchy of the Burgers equation besides linear PDE. The investigated classes 
are one-component two-dimensional Klein-Gordon equations w.,, = f ( w )  with 
arbitrary f ( U )  (see section 2 of this paper) and one-component (1 + 1)-dimensional 
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local evolution equations w,  =f(w, w,, . . . , w ~ . . . ~ )  with arbitrary f [ w ]  of any order 
(section 3 ) .  The corresponding SBA are also found. The results are discussed in 
section 4. 

2. Klein-Gordon equations 

Let us consider a Klein-Gordon equation (KGE)  wry = f (0). By means of the equation 
and its differential prolongations, we express all differential functions of a solution w 

wp= J k w / J y h ) .  Total derivatives of differential functions (followed by the reduction 
to independent differential variables if necessary) are denoted as J,  and a,. According 
to the definition of SBA, 'p = a ( w ,  w I ,  . . . , wnG, mi, .  . . , w s )  is a SBA of KGE O, = f ( w )  
if and only if 

in terms of independent differential variables w, o , ,  w 2 , .  . . , wi ,  UT,. . . (0, = a  h " / a x  h , 

J x J y a [ ~ l - f ( a [ w 1 )  ( 1 )  

where = indicates that ( 1 )  must be satisfied identically with anyfunction w. Indeed, 
since ( 1 )  must be satisfied with any solution w, it must be a differential prolongation 
of the KGE [13] ,  but such prolongations, being expressed in terms of independent 
differential variables, become identities. To find f ( w )  and a [ w ]  we differentiate ( I )  
with respect to oh and wg and thus get new identities which simplify the analysis of 
the original one. 

Calculating a/Jwm+, and J / J w x  of ( l j ,  we get 

J,a,,,, J,a, E 0 (ay,,, =aa/ao,, a,,=Ja/aw,j. 

Therefore a-,,, and a,, are constants according to the Zhiber-Shabat lemma [14] if 
f d2f/dw2#(df/dw)2. In this case, J ~ / J o ~ ,  of ( 1 )  gives d2f/dw2=0 but df/dw#O. 
Proceeding with differentiation of ( 1 )  with respect to oh and wg, we get 

f (0) = 5w + 7 

where constants 5, 7, A, p h ,  U,  ( 5 # 0 )  and orders m, n are arbitrary. Now let 
f d2f/dw2 = (df/dw)2, i.e.f(w) =0, 5, cexp(7w). The first two special cases are linear, 
and in the same way we get 

f ( w ) = O  

/(U) = 5 
a [ w ]  = A w + p ( w , ,  . . . , U,)  +q(wi . .  . . , us) 
a [ w ]  = w + p w , +  u w i + p ( w 2 , .  . . , w , j + q ( w i , .  . . , w n )  

( 3 )  

( 4 )  

where constants A, 5, p, U (5 # 0 ) ,  functions p,  q and orders m, n are arbitrary. The 
last special case wxy = 5 exp( 7 0 )  is the Liouville equation with exact linearization 
w = 7-l ln(25-'7-'#x#,.$-2), #.vy = O  [4] .  In this case, the following nonlinear variables 
w, w , ,  a, a,, a>,. . . , wi ,  p, p i , p ~ ,  . . .(a = w -I 2 7 w : . p  = wr- fqwi ,  ah =a:a ,p i=J:p)  
[14] simplify the analysis of (1)  very much because J,a a,p -0. Differentiating ( 1 )  
with respect to independent differential variables w,  w , ,  W T .  a,, pi, we get a set of 
new identities which can be analysed easily. Then the Liouville equation turns out to 
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admit four continual classes of SBA: 

f ( w )  = 5 e x p ( v )  

a"'[w] = I)-' In 

a " ' [ w ]  = w + v-' In (a,u +$vu2+ a)(a,v+;qU*+ p )  
. L _  r\n(w:+u)(w-+ , \ U)-( exp(Vw)j2, 
2(J,u +$vu2+ U )  

where constants 6, q ( l q  # O), functions u(a, . . . , am_,), U$, . . . , p x )  and orders m, 
n are arbitrary. 

3. Local evolution equations 

Considering local evolution equations (LEE)  U,  = f ( w ,  w , ,  , . . , u p )  ( p a  1, wk = 
J k w / J x k ) ,  we choose independent differential variables to be w, w ,  , w 2 ,  w, ,  etc. A LEE 

o, =flu] admits a SBA p = n(w, wl,  . . . ,on) (na 1) if and only if the differential 
identity 

n 

f [ a [ ~ ] ] =  1 a,,[olJ:f[wl ( 6 )  
k - 0  

k issatisfiedwith anyfuncrionw (J,=L,wk+,d/Jok,J,=a,J~-' ,a~= 1, w o = w ) .  Wehave 
to find all differential functions f [ w ]  and n[w] which satisfy (6). Problems like this 
are usually solved via the F a i  de Bruno formula [4,12]. We propose another approach 
based on the following lemma: 

where binomial coefficients (I) equal s ! / k ! ( s - k ) !  at 0 s  k 6  s and zero at k < O  and 
k > s, orders r and s are arbitrary, and the sum is taken over all nonzero items. (Proof 
induction by s.) By means of this lemma, we can differentiate (6) with respect to 
independent differential variables and thus get simpler identities. From a/Jw,+, of ( 6 ) ,  
we get f w , [ a [ ~ J ] - f , , [ ~ ] .  Since ~ a l ,  the separant of any L E E  sought is constant, 

Let p = 1, then w,  = &o, + g ( w ) .  If g ( w )  = 0, then (6) is satisfied, and we have 
f-, = s,. 

f [ w l =  51Wl a [ w ] = a ( w , w  , , . . . ,  0,) (7)  
with arbitrary constant [,, function a and order n. If g ( w ) # O ,  a suitable point 
transformation w +. $ ( w )  changes g ( w )  into a constant, and (6) gives 

f cm1 = 51wt + v a[w]=w+b(w, ,  w2 ,..., w.) (8) 
with arbitrary constants 6,. 7, function b and order n 

Now let p > 1; then d/dw,+,-l of (6) gives 

fY,.,[a[wll -fynJwl = - p5,a, In o,,,[wI (9) 



404 S Yu Sakooich 

i.e. it is necessary that fn.,[wl = g ( w ) w l  + h(w) where g ( w )  can be made zero via 
suitable w - $ ( w ) .  Now, J/aw.+, of (9) gives a,,,,,,=O, and a 2 / a W ;  of (9) gives 
f,,_, = u w  + tp-, with arbitrary constants U and &, . If U = 0, aw,, is constant due to 
(9). Then, differentiating (6) with respect to w " + ~ - ~ .  . . . . , w and obtaining new identities 
like (9), we have 

(10) 

with arbitrary constants tk, 1). pLX, U: ~ o u = ~ ( p o - l ) ,  p a 2 ,  rial. If u f O ,  we can 
make u = p &  via a suitable scale transformation of w ;  (9) gives a [ o ] =  
w + a ,  In(w,_,+b) with yet unknown b(w,. . . , Making useofthe operatora,+w 
and differentiating (6) with respect to w,,+.-,, . . . , w,  we have 

k = O  k = O  

with arbitrary constants Ck and pk : p 3 2 ,  n 1. These LEE and SEA change into (10) 
with 1) = v = O  via the Hopf-Cole transformation w -  w-'wx and 'p+'p-''px; L E E  (11) 
are the hierarchy of the Burgers equation with the recursion operator a,+ w +w,a;l [4]. 

4. Conclusion 

We have found all KGE and LEE admitting SEA, and also all those particular SEA. The 
results are listed in (2)-(5) for KGE exactly and in (7), (S), (IO) and (11) for LEE up 
to w + $ ( w )  and 'p+$('p) with any $. All those PDE are either linear or exactly 
linearizable via point and Backlund transformations. The results show why most of 
the known Backlund autotransformations contain derivatives of both solutions. 
Moreover, SEA still remain the only known B.acklund autotransformations b[ Q, w ]  = 0 
in which the highest-order derivatives of 'p and w are different. 

Any PDE has either no SEA or  an infinite number of SEA, but those infinities are 
quite different. Namely, exactly solvable PDE (of which general solutions are some 
fixed differential functions of arbitrary functions) have continual classes of SEA (3), 
(9, (7) and (S), while PDE, solvable via Fourier transformation after necessary lineariz- 
ation, have discrete classes of many-parameter SEA (2) ,  (IO) and (11). The same is true 
for Lie-Backlund algebras (LEA) [4]: LEA of exactly solvable PDE have continual bases, 
while LEA of Fourier-solvable PDE have discrete bases. We cannot explain this correla- 
tion because there is no effective theory of LEA with non-local elements at present; 
namely non-local infinitesimal symmetries correspond to such local finite transforma- 
tions as SEA. 

Certainly, SEA (2)-(4), (7). (8) and (IO) of linear PDE are quite trivial, and SEA 

(1 1) of the hierarchy of the Burgers equation can be derived from those of corresponding 
linear LEE [8,11]. It is, however, not so easy to explain SEA (5 )  in terms of the well 
known linearization of the Liouville equation. Even if S E A  (5 )  are of minor importance 
to applications, the results indicate that such a highly symmetrical PDE as the Liouville 
equation [4, 141 can admit nor only one Backlund autotransformation [151. Exactly 
solvable many-component Liouville equations [ 161 can also be expected to admit 
continual classes of SEA. 
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The Miura transformation is known to connect very wide (continual) classes of 
LEE [SI. However the results of section 3 indicate that w, = #w, is the only LEE which 
is mapped into itself via the Miura transformation. The same is true for other differential 
substitutions mentioned in the introduction. 
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